Simulated glyphosate drift influences nitrate assimilation and nitrogen fixation in non-glyphosate-resistant soybean.

نویسندگان

  • Nacer Bellaloui
  • Krishna N Reddy
  • Robert M Zablotowicz
  • Alemu Mengistu
چکیده

Nontarget injury from glyphosate drift is a concern among growers using non-glyphosate-resistant (non-GR) cultivars. The effects of glyphosate drift on nitrate assimilation and nitrogen fixation potential, nodule mass, and yield of non-GR soybean were assessed in a field trial at Stoneville, MS. A non-GR soybean cultivar 'Delta Pine 4748S' was treated with glyphosate at 12.5% of use rate of 0.84 kg of active ingredient/ha at 3 (V2), 6 (V7), and 8 (R2, full bloom) weeks after planting (WAP) soybean to simulate glyphosate drift. Untreated soybean was used as a control. Soybeans were sampled weekly for 2 weeks after each glyphosate treatment to assess nitrate assimilation and N2 fixation potential. Nitrate assimilation was assessed using in vivo nitrate reductase assay in leaves, stems, roots, and nodules. Nitrogen fixation potential was assessed by measuring nitrogenase activity using the acetylene reduction assay (ARA). Nitrogen content of leaves, shoots, and seed and soybean yield were also determined. In the first sampling date (4 WAP), glyphosate drift caused a significant decrease in NRA in leaves (60%), stems (77%), and nodules (50%), with no decrease in roots. At later growth stages, NRA in leaves was more sensitive to glyphosate drift than stems and roots. Nitrogenase activity was reduced 36-58% by glyphosate treatment at 3 or 6 WAP. However, glyphosate treatment at 8 WAP had no effect on nitrogenase activity. Nitrogen content was affected by glyphosate application only in shoots after the first application. No yield, seed nitrogen, protein, or oil concentration differences were detected. These results suggest that nitrate assimilation and nitrogen fixation potential were significantly reduced by glyphosate drift, with the greatest sensitivity early in vegetative growth. Soybean has the ability to recover from the physiological stress caused by glyphosate drift.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen metabolism and seed composition as influenced by glyphosate application in glyphosate-resistant soybean.

Previous research has demonstrated that glyphosate can affect nitrogen fixation or nitrogen assimilation in soybean. This 2-year field study investigated the effects of glyphosate application of 1.12 and 3.36 kg of ae ha(-1) on nitrogen metabolism and seed composition in glyphosate-resistant (GR) soybean. There was no effect of glyphosate application on nitrogen fixation as measured by acetylen...

متن کامل

Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn.

When glyphosate is applied to glyphosate-resistant (GR) crops, drift to nonglyphosate-resistant (non-GR) crops may cause significant injury and reduce yields. Tools are needed to quantify injury and predict crop losses. In this study, glyphosate drift was simulated by direct application at 12.5% of the recommended label rate to non-GR corn (Zea mays L.) at 3 or 6 weeks after planting (WAP) duri...

متن کامل

Nitrogenase activity, nitrogen content, and yield responses to glyphosate in glyphosate-resistant soybean

Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] expressing a glyphosate-insensitive 5-enolpyruvylshikimate-3phosphate synthase (EPSPS) enzyme has provided new opportunities for weed control in soybean production. However, glyphosate is toxic to the soybean nitrogen-fixing symbiont, Bradyrhizobium japonicum, as its EPSPS enzyme is sensitive to glyphosate. The effects of gly...

متن کامل

Impact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a minireview.

Glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] expressing an insensitive 5-enolpyruvylshikimic acid-3-phosphate synthase (EPSPS) gene has revolutionized weed control in soybean production. The soybean nitrogen fixing symbiont, Bradyrhizobium japonicum, possesses a glyphosate-sensitive enzyme and upon exposure to glyphosate accumulates shikimic acid and hydroxybenzoic acids such as p...

متن کامل

Physiological responses of glyphosate-resistant and glyphosate-sensitive soybean to aminomethylphosphonic acid, a metabolite of glyphosate.

Aminomethylphosphonic acid (AMPA) is formed in glyphosate-treated glyphosate-resistant (GR) and glyphosate-sensitive (GS) soybean [Glycine max (L.) Merr.] plants and is known to cause yellowing in soybean. Although, AMPA is less phytotoxic than glyphosate, its mode of action is different from that of glyphosate and is still unknown. Greenhouse studies were conducted at Stoneville, MS to determi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of agricultural and food chemistry

دوره 54 9  شماره 

صفحات  -

تاریخ انتشار 2006